Abstract

One of the important gaps in the reliable prediction of the response of the Southern Ocean carbon cycle to climate change is its sensitivity to seasonal, subseasonal forcings (in time) and mesoscales (in space). The Southern Ocean Carbon and Climate Observatory (SOCCO), a CSIR-led consortium, is planning the Southern Ocean Seasonal Cycle Experiment (SOSCEx), which will be a new type of large-scale experiment. SOSCEx reflects a shift from the historical focus on ship-based descriptive Southern Ocean oceanography and living resource conservation, to system-scale dynamics studies spanning much greater time and space scales. The experiment provides a new and unprecedented opportunity to gain a better understanding of the links between climate drivers and ecosystem productivity and climate feedbacks in the Southern Ocean. This combined high-resolution approach to both observations and modelling experiments will permit us, for the first time, to address some key questions relating to the physical nature of the Southern Ocean and its carbon cycle.

Link to Full Article
A space–time plot showing relative scale magnitudes of a number of platforms (ships, instrumented moorings and gliders), the seasonal cycle and climate projections. This graphical representation emphasises that, even with both ships and moorings observational platforms, it is not possible to address questions on the seasonal cycle sensitivity of climate projections without using autonomous platforms. Ocean gliders are uniquely poised to bridge the spatial and temporal gap between ships and moorings – a bridge which critically covers the seasonal 'window' in the Southern Ocean Seasonal Cycle Experiment.

A space–time plot showing relative scale magnitudes of a number of platforms (ships, instrumented moorings and gliders), the seasonal cycle and climate projections. This graphical representation emphasises that, even with both ships and moorings observational platforms, it is not possible to address questions on the seasonal cycle sensitivity of climate projections without using autonomous platforms. Ocean gliders are uniquely poised to bridge the spatial and temporal gap between ships and moorings – a bridge which critically covers the seasonal ‘window’ in the Southern Ocean Seasonal Cycle Experiment.