Abstract

The Atlantic sector of the Southern Ocean is characterized by markedly different frontal zones with specific seasonal and sub-seasonal dynamics. Demonstrated here is the effect of iron on the potential maximum productivity rates of the phytoplankton community. A series of iron addition productivity versus irradiance (PE) experiments utilizing a unique experimental design that allowed for 24h incubations were performed within the austral summer of 2015/16 to determine the photosynthetic parameters αB, PBmax and Ek. Mean values for each photosynthetic parameter under iron-replete conditions were 1.46 ± 0.55 (μg (μg Chl a)−1 h−1 (μM photons m−2 s−1)−1) for αB, 72.55 ± 27.97 (μg (μg Chl a)−1 h−1) for PBmax and 50.84 ± 11.89 (μM photons m−2 s−1) for Ek, whereas mean values under the control conditions were 1.25 ± 0.92 (μg (μg Chl a)−1 h−1 (μM photons m−2 s−1)−1) for αB, 62.44 ± 36.96 (μg (μg Chl a)−1 h−1) for PBmax and 55.81 ± 19.60 (μM photons m−2 s−1) for Ek. There were no clear spatial patterns in either the absolute values or the absolute differences between the treatments at the experimental locations. When these parameters are integrated into a standard depth-integrated primary production model across a latitudinal transect, the effect of iron addition shows higher levels of primary production south of 50°S, with very little difference observed in the subantarctic and polar frontal zone. These results emphasize the need for better parameterization of photosynthetic parameters in biogeochemical models around sensitivities in their response to iron supply. Future biogeochemical models will need to consider the combined and individual effects of iron and light to better resolve the natural background in primary production and predict its response under a changing climate.

Link to Full Article
Depth-integrated primary production for each transect, including the mean for each treatment, the mean absolute differences between and the mean percentage difference between the treatments.

Depth-integrated primary production for each transect, including the mean for each treatment, the mean absolute differences between and the mean percentage difference between the treatments.

Abstract

Eleven incubation experiments were conducted in the South Atlantic sector of the Southern Ocean to investigate the relationship between new production (ρNO), regenerated production (ρNH+), and total carbon production (ρC) as a function of varying light. The results show substantial variability in the photosynthesis–irradiance (P vs E) parameters, with phytoplankton communities at stations that were considered iron (Fe)-limited showing low maximum photosynthetic capacity (Pmax) and low quantum efficiency of photosynthesis (αB) for ρNO3, but high Pmax and αB for ρNH4, with consequently low export efficiency. Results at stations likely relieved of Fe stress (associated with shallow bathymetry and the marginal ice zone) showed the highest rates of Pmax and αB for ρNO3 and ρC. To establish the key factors influencing the variability of the photosynthetic parameters, a principal components analysis was performed on P vs E parameters, using surface temperature, chlorophyll-a concentration, ambient nutrients, and an index for community size structure. Strong covariance between ambient nitrate (NO3) and αB for ρNO3 suggests that Fe and possibly light co-limitation affects the ability of phytoplankton in the region to access the surplus NOreservoir. However, the observed relationships between community structure and the P vs E parameters suggest superior performance by smaller-sized cells, in terms of resource acquisition and Fe limitation, as the probable driver of smaller-celled phytoplankton communities that have reduced photosynthetic efficiency and which require higher light intensities to saturate uptake. A noticeable absence in covariances between chlorophyll-a and αB, between Pmax and αB, and between temperature and αB may have important implications for primary-production models, although the absence of some expected relationships may be a consequence of the small dataset and low range of variability. However, significant relationships were observed between ambient NO3 and αB for ρNO3, and between the light-saturation parameter Ek for ρNO3 and the phytoplankton community’s size structure, which imply that Fe and light co-limitation drives access to the surplus NO3 reservoir and that larger-celled communities are more efficient at fixing NO3 in low light conditions. Although the mean Pmax results for ρC were consistent with estimates of global  production from satellite chlorophyll measurements, the range of variability was large. These results highlight the need for more-advanced primary-production models that take into account a diverse range of environmental and seasonal drivers of photosynthetic responses.

Link to Full Article
Spatial distribution map of  Maximum photosynthetic capacity (PB max) for carbon uptake

Spatial distribution map of Maximum photosynthetic capacity (PB max) for carbon uptake

Thomalla S.J., Gilbert Ogunkoya, Vichi M., Swart S.
Abstract

One approach to deriving phytoplankton carbon biomass estimates (Cphyto) at appropriate scales is through optical products. This study uses a high-resolution glider data set in the Sub-Antarctic Zone (SAZ) of the Southern Ocean to compare four different methods of deriving Cphyto from particulate backscattering and fluorescence-derived chlorophyll (chl-a). A comparison of the methods showed that at low (<0.5 mg m−3) chlorophyll concentrations (e.g., early spring and at depth), all four methods produced similar estimates of Cphyto, whereas when chlorophyll concentrations were elevated one method derived higher concentrations of Cphyto than the others. The use of methods derived from particulate backscattering rather than fluorescence can account for cellular adjustments in chl-a:Cphytothat are not driven by biomass alone. A comparison of the glider chl-a:Cphyto ratios from the different optical methods with ratios from laboratory cultures and cruise data found that some optical methods of deriving Cphyto performed better in the SAZ than others and that regionally derived methods may be unsuitable for application to the Southern Ocean. A comparison of the glider chl-a:Cphyto ratios with output from a complex biogeochemical model shows that although a ratio of 0.02 mg chl-a mg C−1 is an acceptable mean for SAZ phytoplankton (in spring-summer), the model misrepresents the seasonal cycle (with decreasing ratios from spring to summer and low sub-seasonal variability). As such, it is recommended that models expand their allowance for variable chl-a:Cphyto ratios that not only account for phytoplankton acclimation to low light conditions in spring but also to higher optimal chl-a:Cphyto ratios with increasing growth rates in summer.

Link to Full Article
Time-evolution of chl-a:Cphyto ratios at the surface (10 m) derived from the 30%POC method (solid lighter green top line), the B05 method (red line), the M13 method (blue line), and the S09 method (pink line). In addition, Chl-a:Cphyto ratios were calculated using the chl-a:POC ratio from the cruise data (which implies that all POC is phytoplankton specific) and is presented as 100%POC (darker green bottom dashed line). Included for comparision are (1) the chl-a:Cphyto ratios derived from the original equation from Sathyendranath et al. (2009) presented as S09original (purple line), (2) the satellite range of ratios from Behrenfeld et al. (2005) (black dotted lines) and (3) the ratios derived from the PELAGOS025 model (McKiver et al., 2015, extracted from the model for the same geographical co-ordinates as the glider transect in time but for a year 2011 simulation, solid black line). The inset shows a detail of the daily signal for the B05 method.

Time-evolution of chl-a:Cphyto ratios at the surface (10 m) derived from the 30%POC method (solid lighter green top line), the B05 method (red line), the M13 method (blue line), and the S09 method (pink line). In addition, Chl-a:Cphyto ratios were calculated using the chl-a:POC ratio from the cruise data (which implies that all POC is phytoplankton specific) and is presented as 100%POC (darker green bottom dashed line). Included for comparision are (1) the chl-a:Cphyto ratios derived from the original equation from Sathyendranath et al. (2009) presented as S09original (purple line), (2) the satellite range of ratios from Behrenfeld et al. (2005) (black dotted lines) and (3) the ratios derived from the PELAGOS025 model (McKiver et al., 2015, extracted from the model for the same geographical co-ordinates as the glider transect in time but for a year 2011 simulation, solid black line). The inset shows a detail of the daily signal for the B05 method.

Abstract

The Southern Ocean forms a key component of the global carbon budget, taking up about 1.0 Pg C yr−1 of anthropogenic CO2 emitted annually (∼10.7 ± 0.5 Pg C yr−1 for 2012). However, despite its importance, it still remains undersampled with respect to surface ocean carbon flux variability, resulting in weak constraints for ocean carbon and carbon – climate models. As a result, atmospheric inversion and coupled physics-biogeochemical ocean models still play a central role in constraining the air-sea CO2fluxes in the Southern Ocean. A recent synthesis study (Lenton et al., 2013a), however, showed that although ocean biogeochemical models (OBGMs) agree on the mean annual flux of CO2 in the Southern Ocean, they disagree on both amplitude and phasing of the seasonal cycle and compare poorly to observations. In this study, we develop and present a methodological framework to diagnose the controls on the seasonal variability of sea-air CO2 fluxes in model outputs relative to observations. We test this framework by comparing the NEMO-PISCES ocean model ORCA2-LIM2-PISCES to the Takahashi 2009 (T09) CO2 dataset. Here we demonstrate that the seasonal cycle anomaly for CO2fluxes in ORCA2LP is linked to an underestimation of winter convective CO2 entrainment as well as the impact of biological CO2 uptake during the spring-summer season, relative to T09 observations. This resulted in sea surface temperature (SST) becoming the dominant driver of seasonal scale of the partial pressure of CO2 (pCO2) variability and hence of the differences in the seasonality of CO2 sea-air flux between the model and observations.

Link to Full Article
Global ocean summer and winter air-sea CO2 flux climatologies contrasting Takahashi, 2009 (T09) observations for reference year 2000 (a–b), and NEMO-PISCES (1993–2006) (c–d), units mmol C m−2 day. It shows seasonal climatological biases between the model and observations in the Southern Ocean.

Global ocean summer and winter air-sea CO2 flux climatologies contrasting Takahashi, 2009 (T09) observations for reference year 2000 (a–b), and NEMO-PISCES (1993–2006) (c–d), units mmol C m−2 day. It shows seasonal climatological biases between the model and observations in the Southern Ocean.

Abstract

In the Sub-Antarctic Ocean elevated phytoplankton biomass persists through summer at a time when productivity is expected to be low due to iron limitation. Biological iron recycling has been shown to support summer biomass. In addition, we investigate an iron supply mechanism previously unaccounted for in iron budget studies. Using a 1-D biogeochemical model, we show how storm-driven mixing provides relief from phytoplankton iron limitation through the entrainment of iron beneath the productive layer. This effect is significant when a mixing transition layer of strong diffusivities (kz > 10−4 m2 s−1) is present beneath the surface-mixing layer. Such subsurface mixing has been shown to arise from interactions between turbulent ocean dynamics and storm-driven inertial motions. The addition of intraseasonal mixing yielded increases of up to 60% in summer primary production. These results stress the need to acquire observations of subsurface mixing and to develop the appropriate parameterizations of such phenomena for ocean-biogeochemical models.

Link to Full Article
Comparisons of (a and b) primary production, (c and d) DFe, and (e and f) integrated PP, surface PP*64, MLD, and surface DFe between the 'SXLD surface mixed-layer deepening' and the 'subsurface mixing run'.

Comparisons of (a and b) primary production, (c and d) DFe, and (e and f) integrated PP, surface PP*64, MLD, and surface DFe between the ‘SXLD surface mixed-layer deepening’ and the ‘subsurface mixing run’.

Ryan-Keogh T J, Liza M. DeLizo, Walker O. Smith Jr., Peter N. Sedwick, Dennis J. McGillicuddy Jr., C. Mark Moore, Thomas S. Bibby
Abstract

The bioavailability of iron influences the distribution, biomass and productivity of phytoplankton in the Ross Sea, one of the most productive regions in the Southern Ocean. We mapped the spatial and temporal extent and severity of iron-limitation of the native phytoplankton assemblage using long- (>24 h) and short-term (24 h) iron-addition experiments along with physiological and molecular characterisations during a cruise to the Ross Sea in December–February 2012. Phytoplankton increased their photosynthetic efficiency in response to iron addition, suggesting proximal iron limitation throughout most of the Ross Sea during summer. Molecular and physiological data further indicate that as nitrate is removed from the surface ocean the phytoplankton community transitions to one displaying an iron-efficient photosynthetic strategy characterised by an increase in the size of photosystem II (PSII) photochemical cross section (σPSII) and a decrease in the chlorophyll-normalised PSII abundance. These results suggest that phytoplankton with the ability to reduce their photosynthetic iron requirements are selected as the growing season progresses, which may drive the well-documented progression from Phaeocystis antarctica- assemblages to diatom-dominated phytoplankton. Such a shift in the assemblage-level photosynthetic strategy potentially mediates further drawdown of nitrate following the development of iron deficient conditions in the Ross Sea.

Link to Full Article
Spatial distribution of iron stress response with concurrent variable fluorescence changes in long-term iron addition experiments.

Spatial distribution of iron stress response with concurrent variable fluorescence changes in long-term iron addition experiments.

Meredith, M., Swart S., Monteiro P.M.S., et al.
Abstract

The Southern Ocean exerts a disproportionately strong influence on global climate, so determining its changing state is of key importance in understanding the planetary-scale system. This is a consequence of the connectedness of the Southern Ocean, which links the other major ocean basins and is a site of strong lateral fluxes of climatically important tracers. It is also a consequence of processes occurring within the Southern Ocean, including the vigorous overturning circulation that leads to the formation of new water masses, and to the strong exchange of carbon, heat, and other climatically relevant properties at the ocean surface. However, determining the state of the Southern Ocean in a given year is even more problematic than for other ocean basins, due to the paucity of observations. Nonetheless, using the limited data available, some key aspects of the state of the Southern Ocean in 2014 can be ascertained.

Link to Full Article
BAMS Sate of the Climate 2014 cover

BAMS Sate of the Climate 2014 cover

Thomalla S.J., Dr Marie-Fanny Racault, Swart S., Monteiro P.M.S.
Abstract

In the Southern Ocean, there is increasing evidence that seasonal to subseasonal temporal scales, and meso- to submesoscales play an important role in understanding the sensitivity of ocean primary productivity to climate change. This drives the need for a high-resolution approach to resolving biogeochemical processes. In this study, 5.5 months of continuous, high-resolution (3 h, 2 km horizontal resolution) glider data from spring to summer in the Atlantic Subantarctic Zone is used to investigate: (i) the mechanisms that drive bloom initiation and high growth rates in the region and (ii) the seasonal evolution of water column production and respiration. Bloom initiation dates were analysed in the context of upper ocean boundary layer physics highlighting sensitivities of different bloom detection methods to different environmental processes. Model results show that in early spring (September to mid-November) increased rates of net community production (NCP) are strongly affected by meso- to submesoscale features. In late spring/early summer (late-November to mid-December) seasonal shoaling of the mixed layer drives a more spatially homogenous bloom with maximum rates of NCP and chlorophyll biomass. A comparison of biomass accumulation rates with a study in the North Atlantic highlights the sensitivity of phytoplankton growth to fine-scale dynamics and emphasizes the need to sample the ocean at high resolution to accurately resolve phytoplankton phenology and improve our ability to estimate the sensitivity of the biological carbon pump to climate change.

Link to Full Article
Time series of (a) modelled MLD and water column integrated NPP (mg C m-2 d-1), (b) modelled respiration (mg C m-2 d-1) (Sverdrup 1953), with standard mean error (shaded area), (c) same as for (c) but for NCP (mg C m-2 d-1), and (d) f-ratio approximation of the export efficiency (PP/mean NCP) (solid line).

Time series of (a) modelled MLD and water column integrated NPP (mg C m-2 d-1), (b) modelled respiration (mg C m-2 d-1) (Sverdrup 1953), with standard mean error (shaded area), (c) same as for (c) but for NCP (mg C m-2 d-1), and (d) f-ratio approximation of the export efficiency (PP/mean NCP) (solid line).

Thomalla S.J., Dr Marie-Fanny Racault, Swart S., Monteiro P.M.S.
Abstract

In the Southern Ocean, there is increasing evidence that seasonal to subseasonal temporal scales, and meso- to submesoscales play an important role in understanding the sensitivity of ocean primary productivity to climate change. This drives the need for a high-resolution approach to resolving biogeochemical processes. In this study, 5.5 months of continuous, high-resolution (3 h, 2 km horizontal resolution) glider data from spring to summer in the Atlantic Subantarctic Zone is used to investigate: (i) the mechanisms that drive bloom initiation and high growth rates in the region and (ii) the seasonal evolution of water column production and respiration. Bloom initiation dates were analysed in the context of upper ocean boundary layer physics highlighting sensitivities of different bloom detection methods to different environmental processes. Model results show that in early spring (September to mid-November) increased rates of net community production (NCP) are strongly affected by meso- to submesoscale features. In late spring/early summer (late-November to mid-December) seasonal shoaling of the mixed layer drives a more spatially homogenous bloom with maximum rates of NCP and chlorophyll biomass. A comparison of biomass accumulation rates with a study in the North Atlantic highlights the sensitivity of phytoplankton growth to fine-scale dynamics and emphasizes the need to sample the ocean at high resolution to accurately resolve phytoplankton phenology and improve our ability to estimate the sensitivity of the biological carbon pump to climate change.

Link to Full Article
Abstract

In the Southern Ocean there is increasing evidence that seasonal to sub-seasonal temporal scales, meso- and submesoscales play an important role in understanding the sensitivity of ocean primary productivity to climate change. In this study, high-resolution glider data (3 hourly, 2km horizontal resolution), from ~6 months of sampling (spring through summer) in the Sub-Antarctic Zone, is used to assess 1) the different forcing mechanisms driving variability in upper ocean physics and 2) how these may characterize the seasonal cycle of phytoplankton production. Results highlight the important role meso- to submesoscale features have in driving vertical stratification and early phytoplankton bloom initiations in spring by increasing light exposure. In summer, the combined role of solar heat flux, mesoscale features and subseasonal storms on the extent of the mixed layer is proposed to regulate both light and iron to the upper ocean at appropriate time scales for phytoplankton growth, thereby sustaining the bloom for an extended period through to late summer. This study highlights the need for climate models to resolve both meso- to submesoscale and subseasonal processes in order to accurately reflect the phenology of the phytoplankton community and understand the sensitivity of ocean primary productivity to climate change.

Link to Full Article
Glider sections of (a) temperature (°C), (b) stratification and (c) chlorophyll-a concentration (mg m-3) during the 'spring bloom initiation phase' of SOSCEx. The MLD is depicted using a white curve.

Glider sections of (a) temperature (°C), (b) stratification and (c) chlorophyll-a concentration (mg m-3) during the ‘spring bloom initiation phase’ of SOSCEx. The MLD is depicted using a white curve.

Macey, A.I., Ryan-Keogh T J, Richier, S., Moore, C.M., Bibby, T.S.
Abstract

Iron availability influences phytoplankton physiology and growth over more than one-third of the surface oceans, with recent evidence even indicating iron stress during and following the latter stages of the spring bloom in the high latitude North Atlantic. The mechanistic basis of the phytoplankton physiological responses used for diagnosing iron stress and the broader ecophysiological consequences of iron stress within natural phytoplankton communities still remain unclear. We describe photosynthetic macromolecular and physiological responses of natural phytoplankton communities both in situ and within factorial nutrient-addition (iron and nitrogen) experiments over a seasonal growth cycle in the subpolar North Atlantic. The abundance of quantified photosynthetic proteins increased under relief of iron stress, with the synthesis of the associated protein catalytic complexes accounting for, ~ 3% of inorganic nitrogen drawdown. However, no significant differences in the stoichiometries of the photosynthetic complexes were observed, suggesting that re-modeling of the photosynthetic electron transport chain was not a significant influence on the community-level ecophysiological responses to iron stress. In marked contrast, iron stress resulted in significant increases in the cellular ratios of chlorophyll to the photosynthetic catalysts, including photosystem II (PSII), alongside a marked increase in PSII normalized chlorophyll fluorescence. Characteristic depressions in apparent photosynthetic energy conversion efficiencies in iron-limited oceanic regions are thus likely driven by a significant accumulation of partially energetically uncoupled chlorophyll-binding complexes. Such iron-stress–induced chlorophyll-binding proteins may contribute, ~ 40% of the total chlorophyll pool during iron-stressed periods.

Link to Full Article
Macey-paper-fig

Incubation Experiment 4 (IE4) is shown as a typical example of the response of the phytoplankton community to the addition of Fe (white symbols) in relation to control samples (black symbols). (a–c) changes in the apparent photochemistry of PSII (Fv : Fm), chlorophyll a (μg L-1), and nitrate concentrations (μmol L-1). (d–f) changes in Fm normalized to chlorophyll (Fm : Chl), and accumulation of the peptide PsbA (a subunit of the photosynthetic complex PSII) normalized to total protein (fmol (μg protein)-1) and as total molar concentration (pmol L-1). a.u., arbitrary units.

Swart S., Liu, J., Bhaskar, P., Newman, L., Finney, K., Meredith, M., Schofield, O.
Abstract

The first Southern Ocean Observing System (SOOS) Asian Workshop was successfully held in Shanghai, China in May 2013, attracting over 40 participants from six Asian nations and widening exposure to the objectives and plans of SOOS. The workshop was organized to clarify Asian research activities currently taking place in the Southern Ocean and to discuss, amongst other items, the potential for collaborative efforts with and between Asian countries in SOOS-related activities. The workshop was an important mechanism to initiate discussion, understanding and collaborative avenues in the Asian domain of SOOS beyond current established efforts. Here we present some of the major outcomes of the workshop covering the principle themes of SOOS and attempt to provide a way forward to achieve a more integrated research community, enhance data collection and quality, and guide scientific strategy in the Southern Ocean.

Link to Full Article
Map of the Southern Ocean and approximate location of regular shipping transects maintained by Asian nations.

Map of the Southern Ocean and approximate location of regular shipping transects maintained by Asian nations.

Liu, J., Swart S., Bhaskar, P., Newman, L., Meredith, M., Schofield, O., Jianfeng, HE.
Abstract

SOOS must be a fully integrated and coordinated international system with infrastructure, resources and investment from all nations involved in the Southern Ocean research and observations. This was the motivation behind the organization of the SOOS Asian workshop. The objective of the SOOS Asian Workshop was to highlight the activities of Asian countries currently engaged in Southern Ocean research and observations relevant to the SOOS science strategy, and to stimulate discussion and foster further involvement from Asian countries in the SOOS activities.

Link to Full Article
The Southern Ocean Observing System

The Southern Ocean Observing System

Tagliabue, A., Sallee, J. B., Bowie, A. R., Levy M., Swart S., Boyd. P. W.
Abstract

Low levels of iron limit primary productivity across much of the Southern Ocean. At the basin scale, most dissolved iron is supplied to surface waters from subsurface reservoirs, because land inputs are spatially limited. Deep mixing in winter together with year-round diffusion across density surfaces, known as diapycnal diffusion, are the main physical processes that carry iron-laden subsurface waters to the surface. Here, we analyse data on dissolved iron concentrations in the top 1,000 m of the Southern Ocean, taken from all known and available cruises to date, together with hydrographic data to determine the relative importance of deep winter mixing and diapycnal diffusion to dissolved iron fluxes at the basin scale. Using information on the vertical distribution of iron we show that deep winter mixing supplies ten times more iron to the surface ocean each year, on average, than diapycnal diffusion. Biological observations from the sub-Antarctic sector suggest that following the depletion of this wintertime iron pulse, intense iron recycling sustains productivity over the subsequent spring and summer. We conclude that winter mixing and surface-water iron recycling are important drivers of temporal variations in Southern Ocean primary production.

Link to Full Article
A schematic representation of the seasonal variability in Southern Ocean Fe cycling

A schematic representation of the seasonal variability in Southern Ocean Fe cycling

Page 1 of 3123
'