Blanke, B., Penven, P., Roy, C., Chang N., Kokoszka, F.

This study analyzes the oceanic pathway connecting the Agulhas Bank to the southern Benguela upwelling system by means of a quantitative Lagrangian interpretation of the velocity field calculated by a high-resolution numerical simulation of the ocean around the southwestern tip of Africa. The regional ocean model is forced with National Centers for Environmental Prediction surface winds over 1993–2006 and offers a relevant numerical platform for the investigation of the variability of the water transferred between both regions, both on seasonal and intraseasonal time scales. We show that the intensity of the connection fluctuates in response to seasonal wind variability in the west coast upwelling system, whereas intraseasonal anomalies are mostly related to the organization of the eddy field along the southwestern edge of the Agulhas Bank. Though the study only considers passive advection processes, it may provide useful clues about the strategy adopted by anchovies in their selection of successful spawning location and period. The pathway under investigation is of major interest for the ecology of the southern Benguela upwelling system because it connects the spawning grounds on the Agulhas Bank with the nursery grounds located on the productive upwelling off the west coast.

Link to Full Article